
How Can ChatGPT Help in Automated Building Code
Compliance Checking?

Jiansong Zhang, Ph.D.1

1School of Construction Management Technology, Purdue University, United States of America
zhan3062@purdue.edu

Abstract
One main challenge in the full automation of

building code compliance checking is in the extraction
and transformation of building code requirements
into computable representations. Semantic rule-
based approach has been taken mainly due to its
expected better performance than machine learning-
based approach on this particular task. With the
recent advancement in deep learning AI, particularly
the launch of ChatGPT by OpenAI, there is a
potential for this landscape to be shifted given the
highly regarded capabilities of ChatGPT in
processing (i.e., understanding and generating)
natural language texts and computer codes. In this
paper, the author preliminarily explored the use of
ChatGPT in converting (i.e., extracting and
transforming) building code requirements into
computer codes, and compared it with the results
from cutting-edge semantic rule-based approach. It
was found that comparing to the semantic rule-based
approach, the conversion results from ChatGPT still
has limitations, but there is a great potential for it to
help speed up the implementation and scale-up of
automated building code compliance checking
systems.

Keywords –
Automated building code compliance checking;

AI; ChatGPT; SNACC; Natural language processing

1 Introduction
Automated building code compliance checking has

been one promising application of artificial intelligence
(AI) since its inception. Earlier efforts, however, mainly
hard-coded building code requirements into computable
representations. While effective in addressing various
types of building code requirements, the large amount of
efforts required in such hard-coding tasks coupled with
the large number and different types/versions of building
codes adopted at different authorities having jurisdictions
(AHJs), in fact prohibited automated building code
compliance checking systems from easy scaling up or
even implementation in the field in the first place. In the

last two decades or so, efforts have been made to
automatically or semi-automatically convert building
code requirements from natural language texts into
computable representations. Such efforts are considered
critical in overcoming this major barrier to full
automation of code compliance checking systems. Semi-
automated approach requires manual labeling (or
marking up) of the building code requirements using
predefined tag set such as Requirement, Applicability,
Selection, and Exceptions (RASE) [1] which was used in
the SMARTcodes builder software of International Code
Council [2]. While the improvement was salient
comparing to the hard-coding approach, such semi-
automated approach still failed to lead to wide
implementation or scaling up of automated building code
compliance checking systems. When it comes to
investigating full automation of information extraction
from building codes and their transformation into
computable representations, two main approaches have
been taken: machine learning-based and rule-based. In
spite of the high initial rule development efforts required
in the rule-based approach, it has been shown to achieve
better performance than machine learning-based
approach (e.g., 96.9% precision vs. 93.1% precision; 94.4%
recall vs. 92.9% recall) [3,4]. Now, with the highly
promising launch of GPTChat of OpenAI which
inundated the AI community and our society at large
recently, can the landscape of automated conversion of
building codes into computable representations be shifted?
To answer this question, the author conducted an initial
but systematic investigation of the capabilities of
GPTChat on this task, and compared it with the cutting-
edge rule-based approach.

2 Background
In the automated processing (i.e., extraction and

transformation) of building code requirements, for both
rule-based approach and machine learning approach,
natural language processing (NLP) techniques are
employed. This section provides some relevant
backgrounds in NLP, information extraction, building
code compliance checking, and GPTChat.

2.1 Natural language processing
Natural language processing (NLP) aims to enable

computers to understand and process natural human
languages in a human-like manner [5]. It is an important
field of AI, with multiple NLP-based systems
benchmarking milestones of AI development such as the
ELIZA ChatterBot program developed by Joseph
Weizenbaum at MIT in the 1960s [6] and the IBM
Watson that outperformed human champions in the
“Jeopardy!” game in 2011 [7].

In construction research, NLP has been used to
analyze and process various types of construction
documents to: automate the classification of project
documents [8]; extract key elements of change orders [9];
identify poisonous clauses or extract concepts and
relations from construction contracts [10,11]; review and
analyze construction specifications [12-15]; extract
precursors and outcomes from construction injury reports
[16]; and retrieve similar construction risk cases for
project risk management [17]. Nora El-Gohary’s group
pioneered the use of NLP in analyzing and processing
building codes [3,18-20].

2.1.1 Information Extraction

Information extraction is a classic task/application in
NLP, together with others such as part-of-speech tagging,
named entity recognition, word sense disambiguation,
information retrieval, etc. While information retrieval has
achieved huge success in the commercial sector as
represented by popular search engines such as Google
Search and Microsoft Bing Search, information
extraction is a similar but slightly different task in terms
of: (1) results being monotonous; and (2) task provided
with predefined information template. Information
extraction is typically the first step of converting building
code requirements to computable representations, with
machine learning and rule-based as the two main
approaches used [3,4]. In addition, semantic modeling
has played important roles in this task, by
enabling/augmenting extraction algorithms with
semantic relations and associations, and simplifying
disambiguation at the word level and phrase level.

2.1.2 Machine Translation

Machine translation aims to translate one language
into another using computers. It is an even more
important task to help with automated conversion of
building codes to computable representations, comparing
to information extraction. Modern machine translation
algorithms predominately took a machine learning
approach. Because features are the main ingredient of
machine learning models, and feature engineering can be
a labor-intensive task, information extraction is
sometimes used to help generate features for training
machine learning models.

In spite of the maturity of machine translation tools
and techniques, the direct application of machine
learning models to conquering the building code
conversion problem has been under-investigated.

2.2 Building code compliance checking
Building code compliance checking is traditionally an

intelligent manual task that requires deep expertise in the
architecture, engineering, and construction (AEC)
domain. The manual compliance checking operation is
time-consuming, costly, and subjective/error-prone [3,4].
Efforts in automating the code compliance checking task
date back to the 1960s when Fenves et al. [21] encoded
American Institute of Steel Construction (AISC)
specifications into decision tables. Since then there have
been many efforts in automating the compliance
checking for various building regulations such as those
summarized in [22,23]. However, these efforts/systems
still hard-code building code requirements or at most
provided pre-defined templates to allow some flexibility
in defining rules to reflect code requirements. A more
efficient and flexible conversion of building codes into
computable representations would significantly increase
the usability of such systems. In view of that, the author
jumped on a journey to harness the power of NLP and
other modeling and AI techniques to pursue full
automation of building code compliance checking 12
years ago and created semantic NLP-based information
extraction and transformation algorithms that can
automatically convert building code requirements into
logic programs.

2.3 GPTChat
“GPT-Chat is a GPT-3 based conversational AI that

allows users to interact with the language model to
generate human-like text. GPT-Chat uses OpenAI's GPT-
3 model, which is a state-of-the-art language model that
has been trained on a massive dataset of text data. It can
generate text that is highly coherent and contextually
appropriate, making it well-suited for a wide range of
natural language processing tasks such as text generation,
language translation, and question-answering.” [24].
This is the definition provided by GPTChat when asked
“What is GPTChat?”

Trained using Reinforcement Learning from Human
Feedback (RLHF) and fine-tuned using Proximal Policy
Optimization (PPO), GPTChat has been demonstrated
strong capabilities (close to completely correct and only
required minor manual adjustments) in generating and
translating computer codes (especially Python and Java,
at the time of test) based on natural language human
instructions [25,26,27]. In the context of building code
conversion, the following questions naturally emerge:
How well can GPTChat convert building code
requirements to computer codes? How will the

performance compare to the state-of-the-art rule-based
conversion?

3 Approach
This study is explorative in nature. A simple

comparative evaluation approach is taken by comparing
the conversion results on representative regulatory
requirements.

4 Experiment
Regulatory requirements from International Building

Codes in different types and in an increasing level of
complexity were selected, consistent with the test cases
developed in the author’s previous studies for automated
code compliance checking [3,18].

The tool used to generate logic programs is the most
recent version of the semantic NLP-based automated
compliance checking (SNACC) system which was
initially described in [28,29] and has been constantly
refined with more training data [30]. Although SNACC
could batch process regulatory requirements, for better
clarity in the comparative evaluation, the selected
regulatory requirements were processed/tested one at a
time. Then the same regulatory requirement was formed
as a question/command in form of “Please convert “…”
into Python code.” where the “…” will be replaced by
the regulatory requirement (RQ) text with the double
quotes surrounding it reserved (see an example in Fig. 1).

Time measurement was performed for both
conversion processes on each RQ. When using the
SNACC, time benchmarking function in Java was used
to tell/record the start and finish times of the conversion
process, whereas the processing time in GPTChat was
measured using an online timer. Note that the GPTChat
also automatically generated code explanations the time
consumption of which was not included.

Figure 1. Example question/command in GPTChat.

5 Experimental Results and Analysis
The experimental results are listed below.

RQ1: “Spacing of transverse reinforcement shall not
exceed 8 inches.” [31]

Logic rules generated by SNACC:
compliance_Spacing_of_transverse_reinforcement1(Tra
nsverse_reinforcement):-
spacing(Spacing),transverse_reinforcement(Transverse
_reinforcement),has(Transverse_reinforcement,Spacing
),not greater_than(Spacing,quantity(8,inches)).

check_Spacing_of_transverse_reinforcement1(X):-
(compliance_Spacing_of_transverse_reinforcement1(X)
->writeln((X,is,compliant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-

3,spacing,should,be,not,greater_than,8,inches,rule2))).
Python code generated by GPTChat: Figure 2.
Time consumption by SNACC: 21.32 s.
Time consumption by GPTChat: 12.75 s.

Figure 2. Python code for RQ1 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable
‘max_transverse_reinforcement_spacing’ that holds
the maximum allowed spacing of transverse
reinforcement in inches, and a function
‘check_transverse_reinforcement_spacing’ that takes
an object as an input (could be a class or instance) that
represent the transverse reinforcement and compares its
spacing property to the maximum allowed spacing. If the
spacing is greater than the maximum allowed spacing,
the function will output a message indicating that the
spacing exceeds the limit, otherwise it will output a
message indicating that the spacing meets the limit.”

RQ2: “Courts shall not be less than 3 feet in width.”
[32]

Logic rules generated by SNACC:
compliance_width_of_courts1(Courts):-

courts(Courts),width(Width),has(Courts,Width),not
less_than(Width,quantity(3,feet)).

check_width_of_courts1(X):-
(compliance_width_of_courts1(X)->writeln((X,is,compl
iant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,width,should,be,not,less_than,3,feet,rule2))).

Python code generated by GPTChat: Figure 3.
Time consumption by SNACC: 20.58 s.
Time consumption by GPTChat: 11.16 s.

Figure 3. Python code for RQ2 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘min_court_width’ that holds the
minimum required court width in feet, and a function

‘check_court_width’ that takes a court as an input and
compares its width to the minimum required width. If the
width of the court is less than the minimum required
width, the function will output a message indicating that
the court width does not meet the requirement, otherwise
it will output a message indicating that the court width
meets the requirement.”

RQ3: “The unit shall have a living room of not less
than 220 square feet of floor area.” [32]

Logic rules generated by SNACC:
compliance_unit1(Unit):-

unit(Unit),living_room(Living_room),has(Unit,Living_r
oom),floor_area(Floor_area),has(Living_room,Floor_a
rea),not
less_than(Floor_area,quantity(220,square_feet)).

check_unit1(X):-
(compliance_unit1(X)->writeln((X,is,compliant,with,sec
tion,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,rule2))).

Python code generated by GPTChat: Figure 4.
Time consumption by SNACC: 20.45 s.
Time consumption by GPTChat: 12.41 s.

Figure 4. Python code for RQ3 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘min_living_room_area’ that holds
the minimum required living room area in square feet,
and a function ‘check_living_room_area’ that takes a
unit as an input and compares its living room area to the
minimum required area. If the living room area of the unit
is less than the minimum required area, the function will
output a message indicating that the living room area
does not meet the requirement, otherwise it will output a
message indicating that the living room area meets the
requirement.”

RQ4: “The thickness of concrete floor slabs
supported directly on the ground shall not be less than
31/2 inches.” [31]

Logic rules generated by SNACC:
compliance_thickness_of_concrete_floor_slabs_sup

ported1(Concrete_floor_slabs_supported):-
thickness(Thickness),concrete_floor_slabs_supported(C

oncrete_floor_slabs_supported),has(Concrete_floor_sla
bs_supported,Thickness),ground_prep(Ground),on(Con
crete_floor_slabs_supported,Ground),not
less_than(Thickness,quantity(31/2,inches)).

check_thickness_of_concrete_floor_slabs_supported
1(X):-
(compliance_thickness_of_concrete_floor_slabs_suppor
ted1(X)->writeln((X,is,compliant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,thickness,should,be,not,less_than,31/2,inches,rule2))).

Python code generated by GPTChat: Figure 5.
Time consumption by SNACC: 19.03 s.
Time consumption by GPTChat: 17.22 s.

Figure 5. Python code for RQ4 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘min_concrete_thickness’ that holds
the minimum required thickness of concrete floor slab
supported directly on the ground in inches, and a function
‘check_concrete_thickness’ that takes an object as an
input (could be a class or instance) that represent the slab,
checks if it is supported directly on the ground and
compares its thickness property to the minimum required
thickness. If the thickness is less than the minimum
required thickness, the function will output a message
indicating that the slab does not meet the requirement,
otherwise it will output a message indicating that the slab
meets the requirement.”

RQ5: “Occupiable spaces, habitable spaces and
corridors shall have a ceiling height of not less than 7 feet
6 inches.” [32]

Logic rule generated by SNACC:
compliance_Occupiable_spaces1(Occupiable_space

s):-
(occupiable_spaces(Occupiable_spaces);habitable_spa
ces(Occupiable_spaces);corridors(Occupiable_spaces))
,ceiling_height(Ceiling_height),has(Occupiable_spaces
_habitable_spaces_corridors,Ceiling_height),not
less_than(Ceiling_height,quantity(7,feet)),associated(O
ccupiable_spaces,Habitable_spaces),associated(Occupi
able_spaces,Ceiling_height).

check_Occupiable_spaces1(X):-
(compliance_Occupiable_spaces1(X)->writeln((X,is,co
mpliant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-

3,rule2))).
Python code generated by GPTChat: Figure 6.
Time consumption by SNACC: 18.04 s.
Time consumption by GPTChat: 17.99 s.

Figure 6. Python code for RQ5 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘min_ceiling_height’ that holds the
minimum required ceiling height in inches (7 feet 6
inches converted to inches), and a function
‘check_ceiling_height’ that takes a space as an input,
checks if it is of type "occupiable", "habitable", or
"corridor", and compares its ceiling height to the
minimum required height. If the ceiling height of the
space is less than the minimum required height, the
function will output a message indicating that the space
does not meet the requirement, otherwise it will output a
message indicating that the space meets the requirement.”

RQ6: “Bars shall not be smaller than No. 4 and shall
have a total area of not less than 0.002 times the gross
cross-sectional area of the footing.” [31]

Logic rule generated by SNACC:
compliance_Bars1(Bars):-

bars(Bars),times_gross_cross_sectional_area(Times_gr
oss_cross_sectional_area),footing(Footing),has(Footin
g,Times_gross_cross_sectional_area),not
less_than_or_equal(Bars,quantity(1,no_4)).

compliance_Total_area3(Total_area):-
total_area(Total_area),times_gross_cross_sectional_ar
ea(Times_gross_cross_sectional_area),footing(Footing)
,has(Footing,Times_gross_cross_sectional_area),not
less_than(Total_area,quantity(0.002,Times_gross_cross
_sectional_area)),associated(Total_area,Times_gross_c
ross_sectional_area).

check_Bars1(X):-
(compliance_Bars1(X)->writeln((X,is,compliant,with,se
ction,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,bars,should,be,not,less_than_or_equal,1,no_4,rule2))).

check_Total_area3(X):-
(compliance_Total_area3(X)->writeln((X,is,compliant,
with,section,1904-
3,rule3));writeln((X,is,noncompliant,with,section,1904-
3,total_area,should,be,not,less_than,0.002,times_gross_
cross_sectional_area,rule4))).

Python code generated by GPTChat: Figure 7.

Time consumption by SNACC: 19.45 s.
Time consumption by GPTChat: 21.03 s.

Figure 7. Python code for RQ6 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘min_bar_size’ that holds the
minimum required size for bars in the footing, a variable
‘min_bar_area_ratio’ that holds the minimum required
ratio of total area of bars to the gross cross-sectional area
of the footing, and a function
‘check_footing_reinforcement’ that takes an object as
an input (could be a class or instance) that represent the
footing and check each bar in the footing against the
minimum required size, and the minimum required ratio
of total area of bars to the gross cross-sectional area of
the footing. If any bar does not meet these requirements,
the function will output a message indicating that the
footing reinforcement does not meet the requirement,
otherwise it will output a message indicating that the
footing reinforcement meets the requirements.”

RQ7: “Any room with a furred ceiling shall be
required to have the minimum ceiling height in two thirds
of the area thereof, but in no case shall the height of the
furred ceiling be less than 7 feet.” [32]

Logic rules generated by SNACC:
compliance_a_furred_ceiling1(A_furred_ceiling):-

room(Room),a_furred_ceiling(A_furred_ceiling),has(Ro
om,A_furred_ceiling),minimum_ceiling_height(Minimu
m_ceiling_height),area(Area),height(Height),furred_cei
ling(Furred_ceiling),has(Furred_ceiling,Height),has(F
urred_ceiling,A_furred_ceiling),have_in(Room,quantity
(2/3,Area)),not less_than(Height,quantity(7,feet)).

check_a_furred_ceiling1(X):-
(compliance_a_furred_ceiling1(X)->writeln((X,is,compl
iant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,rule2))).

Python code generated by GPTChat: Figure 8.
Time consumption by SNACC: 20.54 s.

Time consumption by GPTChat: 24.45 s.

Figure 8. Python code for RQ7 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘min_ceiling_height’ that holds the
minimum required ceiling height in inches (7 feet
converted to inches), a variable
‘min_ceiling_height_ratio’ that holds the minimum
required ratio of the area of furred ceiling to the room
area, and a function ‘check_furred_ceiling_height’ that
takes a room as an input, checks if it has a furred ceiling,
if yes it compares its ceiling height and furred ceiling area
to the minimum required”

RQ8: “In dwellings assigned to Seismic Design
Category D or E, the height of the wall shall not exceed
8 feet, the thickness shall not be less than 71/2 inches,
and the wall shall retain no more than 4 feet of
unbalanced fill.” [31]

Logic rules generated by SNACC:
compliance_Height_of_wall1(Height):-

dwellings(Dwellings),in_prep(Wall,Dwellings),assigned
_to(Dwellings,Seismic_Design_Category_D_or_E),seis
mic_design_category_d_or_e(Seismic_Design_Categor
y_D_or_E),height(Height),wall(Wall),has(Wall,Height),
thickness(Thickness),unbalanced_fill(Unbalanced_fill),
not greater_than(Height,quantity(8,feet)).

compliance_Thickness_of_wall3(Thickness):-
dwellings(Dwellings),in_prep(Wall,Dwellings),assigned
_to(Dwellings,Seismic_Design_Category_D_or_E),seis
mic_design_category_d_or_e(Seismic_Design_Categor
y_D_or_E),height(Height),wall(Wall),thickness(Thickne
ss),has(Wall,Thickness),unbalanced_fill(Unbalanced_fil
l),not less_than(Thickness,quantity(71/2,inches)).

compliance_Unbalanced_fill_of_wall5(Unbalanced
_fill):-
dwellings(Dwellings),in_prep(Wall,Dwellings),assigned
_to(Dwellings,Seismic_Design_Category_D_or_E),seis
mic_design_category_d_or_e(Seismic_Design_Categor
y_D_or_E),height(Height),wall(Wall),thickness(Thickne

ss),unbalanced_fill(Unbalanced_fill),has(Wall,Unbalan
ced_fill),not
greater_than(Unbalanced_fill,quantity(4,feet)).

check_Height_of_wall1(X):-
(compliance_Height_of_wall1(X)->writeln((X,of,wall,is
,compliant,with,section,1904-
3,rule1));writeln((X,of,wall,is,noncompliant,with,sectio
n,1904-
3,height,should,be,not,greater_than,8,feet,rule2))).

check_Thickness_of_wall3(X):-
(compliance_Thickness_of_wall3(X)->writeln((X,of,wal
l,is,compliant,with,section,1904-
3,rule3));writeln((X,of,wall,is,noncompliant,with,sectio
n,1904-
3,thickness,should,be,not,less_than,71/2,inches,rule4))).

check_Unbalanced_fill_of_wall5(X):-
(compliance_Unbalanced_fill_of_wall5(X)->writeln((X,
of,wall,is,compliant,with,section,1904-
3,rule5));writeln((X,of,wall,is,noncompliant,with,sectio
n,1904-
3,unbalanced_fill,should,be,not,greater_than,4,feet,rule
6))).

Python code generated by GPTChat: Figure 9.
Time consumption by SNACC: 20.50 s.
Time consumption by GPTChat: 27.52 s.

Figure 9. Python code for RQ8 by ChatGPT

Code explanation generated by GPTChat: “This code
defines a variable ‘max_wall_height’ that holds the
maximum allowed height of the wall in feet, a variable
‘min_wall_thickness’ that holds the minimum required
thickness of the wall in inches, a variable
‘max_unbalanced_fill’ that holds the maximum allowed
unbalanced fill that the wall should retain, and a function
‘check_wall_requirement’ that takes an object as an
input (could be a class or instance) that represent the
dwelling and checks if the dwelling is assigned to seismic
design category”

5.1 Analysis
It was found that with the increase of complexity in

the regulatory requirement, the processing time of
SNACC stayed relatively flat whereas the processing
time of GPTChat stably increased (Figure 10). This can
be caused by the inherent complexity of GPTChat’s deep
learning models which is much more complex than the
rule-based core of SNACC.

In terms of the quality of the conversion results, both
SNACC and GPTChat captured the logic in each
regulatory requirement reasonably well. One interesting
observation is that the Python codes generated by
GPTChat did not directly handle units of measures in
most cases. For example, “8 inches” will be implemented
as the numeric value 8 with the unit of measure “inches”
left to the comment section. In one case, it did convert “7”
feet to “7*12” inches but still only kept the numeric value
in the code and left the units to the comment section. Yet,
based on the code explanations automatically generated,
it appeared GPTChat did clearly understand the meaning
and the use of units of measures. In addition, the code
explanations appear to be smooth natural language
without any error (some has period in the end some has
not). Another finding was that the GPTChat struggled a
little bit in dealing with domain-specific concepts such as
the “No. 4” size bars. The Python code generated directly
treated “No. 4” size of bars as the numeric value “4”.
Without domain knowledge in construction, it will be
difficult to use this Python code in compliance checking
applications.

Figure 10. Time Consumption of SNACC and
ChatGPT

6 Conclusion
Automated conversion of building code requirements

into computable representations is one main barrier to the
full automation of building code compliance checking,
and thus in turn one main barrier to the wide
implementation and scale-up of automated building code
compliance checking systems. The state of the art in
building code conversion still favored rule-based
approach which had better performance than machine

learning-based approach. The recent development in
deep learning especially the release of GPTChat has a
potential to shift that landscape. To investigate if that is
the case, the author did a preliminary but systematic set
of tests on eight building code requirements with
different types and increasing levels of complexity. The
most recent semantic NLP-based automated compliance
checking (SNACC) system was comparatively evaluated
with GPTChat in converting each of the regulatory
requirement. SNACC converted requirements into logic
rules, whereas GPTChat converted requirements into
Python codes. It was found that the processing time curve
by SNACC was relatively flat with regard to the
complexity of regulatory requirements whereas the
processing time by GPTChat stably increased. This could
be due to the nature of deep learning behind GPTChat
which is inherently more complex than the rule-based
algorithm behind SNACC. Furthermore, the Python
codes generated did not explicitly treated units of
measures, and it will require construction domain
knowledge to modify the Python codes to use them in
practical building code compliance checking tasks. In
conclusion, the GPTChat did not immediately change the
landscape in building codes conversion research but it
has great potential to facilitate a faster implementation
and even scaling up of existing automated code
compliance checking systems by reducing the amount of
efforts needed in coding. Furthermore, providing specific
domain knowledge as part of the prompt could further
improve the results, which the author is planning to test
in his future work. More holistic testing in the future is
also planned to use precision, recall, F1-measure, ROC
curve, etc.

References
[1] Hjelseth E. and Nisbet N. Capturing normative

constraints by use of the semantic mark-up RASE
methodology. Proc., 30th CIB W102, pages 1–10,
Queensland University of Technology, Brisbane,
Australia, 2011.

[2] Wix J. and Nisbet N. Using constraints to validate
and check building information models. Proc.,
eWork and eBusiness in Architecture, Engineering
and Construction, pages 467–476, Sophia Antipolis,
France, 2008.

[3] Zhang J. and El-Gohary N. Semantic NLP-based
information extraction from construction regulatory
documents for automated compliance checking. J.
Comput. Civ. Eng., 30(2): 04015014, 2013.

[4] Zhang R. and El-Gohary N. A deep neural network-
based method for deep information extraction using
transfer learning strategies to support automated
compliance checking. Autom. Constr.
132(December 2021): 103834, 2021.

[5] Cherpas, C. Natural language processing,

pragmatics, and verbal behavior. Analysis
of Verbal Behavior, 10: 135–147, 1992.

[6] Ireland C. Alan Turing at 100. On-line:
https://news.harvard.edu/gazette/story/2012/09/ala
n-turing-at-100/, Accessed: 12/01/2023.

[7] Markoff J. Computer Wins on ‘Jeopardy!’: Trivial,
It’s Not. Online:
https://www.nytimes.com/2011/02/17/science/17je
opardy-watson.html, Accessed: 12/01/2023.

[8] Caldas C.H., Soibelman L. and Han, J. Automated
classification of construction project documents. J.
Comput. Civ. Eng., 16(4): 234–243, 2002.

[9] Ko T. and Jeong H.D. Syntactic approach to
extracting key elements of work modification cause
in change-order documents. Proc., Construction
Research Congress (CRC) 2020, pages 134–142,
Tempe, Arizona, USA, 2020.

[10] Lee J., Yi J.-S. and Son J. Development of
automatic-extraction model of poisonous clauses in
international construction contracts using rule-
based NLP.” J. Comput. Civ. Eng., 33(3): 04019003,
2019.

[11] Al-Qady M. and Kandil A. Concept relation
extraction from construction documents using
natural language processing. J. Constr. Eng.
Manag., 136(3): 294–302, 2010.

[12] Moon S., Lee G., Chi S. and Oh H. Automated
construction specification review with named entity
recognition using natural language processing. J.
Constr. Eng. Manag., 147(1): 04020147, 2021.

[13] Akanbi T. and Zhang J. Automated design
information extraction from construction
specifications to support wood construction cost
estimation. Proc., CRC 2020, pages 658–666,
Tempe, Arizona, USA, 2020.

[14] Akanbi T. and Zhang J. Design information
extraction from construction specifications to
support cost estimation. Autom. Constr.,
131(November 2021): 103835, 2021.

[15] Ren R. and Zhang J. Semantic rule-based
construction procedural information extraction to
guide jobsite sensing and monitoring. J. Comput.
Civ. Eng., 35(6): 04021026, 2021.

[16] Tixier A.J.P., Hallowell M.R., Rajagopalan B. and
Bowman D. Automated content analysis for
construction safety: A natural language processing
system to extract precursors and outcomes from
unstructured injury reports. Autom. Constr. 62: 45–
56, 2016.

[17] Zou Y., Kiviniemi A. and Jones, S.W. Retrieving
similar cases for construction project risk
management using natural language processing
techniques. Autom. Constr., 80: 66–76, 2017.

[18] Zhang J. and El-Gohary N. Automated information
extraction from construction-related regulatory

documents for automated compliance checking.
Proc., CIB W078 / W102, Sophia Antipolis, France,
2011.

[19] Salama D. and El-Gohary N. Automated
compliance checking of construction operation
plans using a deontology for the construction
domain. J. Comput. Civ. Eng., 27(6): 681-698, 2013.

[20] Salama D. and El-Gohary N. Natural language
processing for automated regulatory and contractual
document analysis. Proc., 2011 CSCE Annual
Conference, Ottawa, ON, Canada, 2011.

[21] Fenves S.J., Gaylord E.H. and Goel S.K. Decision
table formulation of the 1969 AISC specification.
Civ. Eng. Studies: Struct. Res. Series, 347, 1969.

[22] Eastman, C., Lee, J., Jeong, Y., and Lee, J.
Automatic rule-based checking of building designs.
Autom. Constr., 18(8): 1011-1033, 2009.

[23] Dimyadi, J. and Amor, R. Automated building code
compliance checking - where is it at? Proc., CIB
World Build. Congress, Brisbane, Australia, 2013.

[24] GPTChat. What is GPTChat? Online:
https://chat.openai.com/chat, accessed: 10/01/2023.

[25] Kim S. Writing code snippet using AI – OpenAI
ChatGPT. Online:
https://medium.com/geekculture/, accessed
11/01/2023.

[26] Doglio F. I asked ChatGPT to build a To-Do app –
Have we finally met our replacement? Online:
https://blog.bitsrc.io/, accessed 11/01/2023.

[27] OpenAI. CHATGPT: Optimizing language models
for dialogue. Online:
https://openai.com/blog/chatgpt/, accessed
13/02/2023.

[28] Zhang, J. Automated code compliance checking in
the construction domain using semantic natural
language processing and logic-based reasoning.
Ph.D. Dissertation, University of Illinois at Urbana-
Champaign, Urbana, Illinois, USA, 2015.

[29] Zhang J. and El-Gohary N. Integrating semantic
NLP and logic reasoning into a unified system for
fully-automated code checking. Autom. Constr., 73,
45-57, 2017.

[30] Wu J., Xue X. and Zhang, J. invariant signature,
logic reasoning, and semantic natural language
processing (NLP)-based automated building code
compliance checking (I-SNACC) framework."
ITcon, 28, Special Issue of The Eastman
Symposium, 1-18.

[31] International Code Council (ICC). 2009
International Building Code. Online:
https://codes.iccsafe.org/content/IBC2009,
accessed 01/01/2023.

[32] ICC. 2006 International Building Code. Online:
https://codes.iccsafe.org/content/IBC2006,
accessed 01/01/2023.

